Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-29165
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMomoh, Kabir-
dc.contributor.authorZulkifli, Shamsul Aizam-
dc.contributor.authorKorba, Petr-
dc.contributor.authorSegundo Sevilla, Felix Rafael-
dc.contributor.authorAfandi, Arif Nur-
dc.contributor.authorVelazquez-Ibañez, Alfredo-
dc.date.accessioned2023-11-17T10:54:16Z-
dc.date.available2023-11-17T10:54:16Z-
dc.date.issued2023-05-08-
dc.identifier.issn1996-1073de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/29165-
dc.description.abstractThe growing trend for electric vehicles (EVs) and fast-charging stations (FCSs) will cause the overloading of grids due to the high current injection from FCSs’ converters. The insensitive nature of the state of charge (SOC) of EV batteries during FCS operation often results in grid instability problems, such as voltage and frequency deviation at the point of common coupling (PCC). Therefore, many researchers have focused on two-stage converter control (TSCC) and single-stage converter (SSC) control for FCS stability enhancement, and suggested that SSC architectures are superior in performance, unlike the TSCC methods. However, only a few research works have focused on SSC techniques, despite the techniques’ ability to provide inertia and damping support through the virtual synchronous machine (VSM) strategy due to power decoupling and dynamic response problems. TSCC methods deploy current or voltage control for controlling EVs’ SOC battery charging through proportional-integral (PI), proportional-resonant (PR), deadbeat or proportional-integral-derivative (PID) controllers, but these are relegated by high current harmonics, frequency fluctuation and switching losses due to transient switching. This paper reviewed the linkage between the latest research contributions, issues associated with TSCC and SSC techniques, and the performance evaluation of the techniques, and subsequently identified the research gaps and proposed SSC control with SOC consideration for further research studies.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofEnergiesde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectElectric vehiclede_CH
dc.subjectBattery state of chargede_CH
dc.subjectFast charging stationde_CH
dc.subjectGrid stabilityde_CH
dc.subjectVirtual synchronous machinede_CH
dc.subjectMobilitätde_CH
dc.subjectElektrizitätde_CH
dc.subjectNetzstabilitätde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleState-of-the-art grid stability improvement techniques for electric vehicle fast-charging stations for future outlooksde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Energiesysteme und Fluid-Engineering (IEFE)de_CH
dc.identifier.doi10.3390/en16093956de_CH
dc.identifier.doi10.21256/zhaw-29165-
zhaw.funding.euNode_CH
zhaw.issue9de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start3956de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume16de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
zhaw.monitoring.costperiod2023de_CH
Appears in collections:Publikationen School of Engineering

Show simple item record
Momoh, K., Zulkifli, S. A., Korba, P., Segundo Sevilla, F. R., Afandi, A. N., & Velazquez-Ibañez, A. (2023). State-of-the-art grid stability improvement techniques for electric vehicle fast-charging stations for future outlooks. Energies, 16(9), 3956. https://doi.org/10.3390/en16093956
Momoh, K. et al. (2023) ‘State-of-the-art grid stability improvement techniques for electric vehicle fast-charging stations for future outlooks’, Energies, 16(9), p. 3956. Available at: https://doi.org/10.3390/en16093956.
K. Momoh, S. A. Zulkifli, P. Korba, F. R. Segundo Sevilla, A. N. Afandi, and A. Velazquez-Ibañez, “State-of-the-art grid stability improvement techniques for electric vehicle fast-charging stations for future outlooks,” Energies, vol. 16, no. 9, p. 3956, May 2023, doi: 10.3390/en16093956.
MOMOH, Kabir, Shamsul Aizam ZULKIFLI, Petr KORBA, Felix Rafael SEGUNDO SEVILLA, Arif Nur AFANDI und Alfredo VELAZQUEZ-IBAÑEZ, 2023. State-of-the-art grid stability improvement techniques for electric vehicle fast-charging stations for future outlooks. Energies. 8 Mai 2023. Bd. 16, Nr. 9, S. 3956. DOI 10.3390/en16093956
Momoh, Kabir, Shamsul Aizam Zulkifli, Petr Korba, Felix Rafael Segundo Sevilla, Arif Nur Afandi, and Alfredo Velazquez-Ibañez. 2023. “State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks.” Energies 16 (9): 3956. https://doi.org/10.3390/en16093956.
Momoh, Kabir, et al. “State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks.” Energies, vol. 16, no. 9, May 2023, p. 3956, https://doi.org/10.3390/en16093956.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.