Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-29349
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScheel, Pooriya-
dc.contributor.authorWrobel, Rafal-
dc.contributor.authorRheingans, Bastian-
dc.contributor.authorMayer, Thomas-
dc.contributor.authorLeinenbach, Christian-
dc.contributor.authorMazza, Edoardo-
dc.contributor.authorHosseini, Ehsan-
dc.date.accessioned2023-12-08T15:03:12Z-
dc.date.available2023-12-08T15:03:12Z-
dc.date.issued2023-
dc.identifier.issn0020-7403de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/29349-
dc.description.abstractIn laser based powder-bed fusion of metals (PBF-LB/M), parts are fabricated by melting layers of powder using a high-intensity laser beam. During this process, the material is exposed to rapid cooling rates and intense thermal gradients, which are the underlying causes of residual stress formation and development of a unique microstructure in these components. Therefore, understanding the heat transfer phenomenon and reliably representing exposed temperature profiles in simulation frameworks are prerequisites for studying the microstructure and residual stress development during the PBF-LB/M process. This work employs a combination of experimental measurements and model development to study this phenomenon. Thermal properties of Hastelloy X were measured in the as-deposited state and used to setup finite element (FE) thermal simulations of the PBF-LB/M process. In addition, in-situ temperature evolutions near the laser tracks were measured by instrumenting thin-wall structures with K-type thermocouples in a two-stage fabrication process. The gathered data was used to calibrate uncertain modelling parameters, and ultimately, the simulation framework could closely represent the measured temperature histories. To address the high computational cost of FE thermal simulations, an adaptive-local/global multiscale modelling approach was proposed, which substantially reduced computation times without compromising the accuracy of the results. The modelling files and scripts are available in github.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofInternational Journal of Mechanical Sciencesde_CH
dc.rightshttps://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectLaser powder bed fusionde_CH
dc.subjectFinite element thermal analysisde_CH
dc.subjectIn-situ measurementde_CH
dc.subjectMultiscale modellingde_CH
dc.subjectComputational efficiencyde_CH
dc.subject.ddc670: Industrielle und handwerkliche Fertigungde_CH
dc.titleAdvancing efficiency and reliability in thermal analysis of laser powder-bed fusionde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitut für Mechanische Systeme (IMES)de_CH
dc.identifier.doi10.1016/j.ijmecsci.2023.108583de_CH
dc.identifier.doi10.21256/zhaw-29349-
zhaw.funding.euNode_CH
zhaw.issue108583de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume260de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf200551de_CH
zhaw.webfeedAdditive Manufacturingde_CH
zhaw.webfeedMM Mechanics for Modellingde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
zhaw.relation.referenceshttps://github.com/HighTempIntegrity/Ghanbari_Multiscale2023de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2023_Scheel-etal_Advancing-efficiency-reliability-in-thermal-analysis-in-LPBF.pdf3.91 MBAdobe PDFThumbnail
View/Open
Show simple item record
Scheel, P., Wrobel, R., Rheingans, B., Mayer, T., Leinenbach, C., Mazza, E., & Hosseini, E. (2023). Advancing efficiency and reliability in thermal analysis of laser powder-bed fusion. International Journal of Mechanical Sciences, 260(108583). https://doi.org/10.1016/j.ijmecsci.2023.108583
Scheel, P. et al. (2023) ‘Advancing efficiency and reliability in thermal analysis of laser powder-bed fusion’, International Journal of Mechanical Sciences, 260(108583). Available at: https://doi.org/10.1016/j.ijmecsci.2023.108583.
P. Scheel et al., “Advancing efficiency and reliability in thermal analysis of laser powder-bed fusion,” International Journal of Mechanical Sciences, vol. 260, no. 108583, 2023, doi: 10.1016/j.ijmecsci.2023.108583.
SCHEEL, Pooriya, Rafal WROBEL, Bastian RHEINGANS, Thomas MAYER, Christian LEINENBACH, Edoardo MAZZA und Ehsan HOSSEINI, 2023. Advancing efficiency and reliability in thermal analysis of laser powder-bed fusion. International Journal of Mechanical Sciences. 2023. Bd. 260, Nr. 108583. DOI 10.1016/j.ijmecsci.2023.108583
Scheel, Pooriya, Rafal Wrobel, Bastian Rheingans, Thomas Mayer, Christian Leinenbach, Edoardo Mazza, and Ehsan Hosseini. 2023. “Advancing Efficiency and Reliability in Thermal Analysis of Laser Powder-Bed Fusion.” International Journal of Mechanical Sciences 260 (108583). https://doi.org/10.1016/j.ijmecsci.2023.108583.
Scheel, Pooriya, et al. “Advancing Efficiency and Reliability in Thermal Analysis of Laser Powder-Bed Fusion.” International Journal of Mechanical Sciences, vol. 260, no. 108583, 2023, https://doi.org/10.1016/j.ijmecsci.2023.108583.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.