Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-30340
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Dong‐Joo-
dc.contributor.authorYu, In Cheol-
dc.contributor.authorJazbinsek, Mojca-
dc.contributor.authorKim, Chaeyoon-
dc.contributor.authorYoon, Woojin-
dc.contributor.authorYun, Hoseop-
dc.contributor.authorKim, Sang‐Wook-
dc.contributor.authorKim, Dongwook-
dc.contributor.authorRotermund, Fabian-
dc.contributor.authorKwon, O‐Pil-
dc.date.accessioned2024-03-22T10:39:13Z-
dc.date.available2024-03-22T10:39:13Z-
dc.date.issued2023-11-06-
dc.identifier.issn2195-1071de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/30340-
dc.description.abstractTerahertz (THz) waves interact with molecular phonon vibrations of organic matter. When designing organic THz-device materials, conformational flexible groups (CFGs) are in most cases avoided. CFGs create many low-energy conformers with high conformational entropy, which results in large and many phonon vibration modes that lead to undesired self-absorption of THz waves. Here, nonpolar CFGs only having weak intermolecular interaction capability are unusually introduced into organic THz-device materials, utilized for efficient THz wave generation. Newly designed THz-source crystals possess nonpolar methylene (CH2)n units having high conformational flexibility. Compared to previously reported benchmark crystals without methylene CFGs, introducing methylene CFGs significantly reduces void volume in newly designed crystals. This leads to the suppression of molecular phonon vibrations below 2.0 THz (i.e., introducing flexibility results in local rigidity). At infrared pump wavelengths, new CFG-contained crystals generate a strong THz electric field that is one order of magnitude stronger than that generated in inorganic ZnTe crystals. CFG-contained crystals exhibit a flatter spectral shape of the generated THz wave than benchmark crystals without methylene CFGs. Therefore, the introduction of CFGs is a very intriguing design strategy for organic THz-device materials to reduce the limitations caused by phonon vibrations.de_CH
dc.language.isoende_CH
dc.publisherWileyde_CH
dc.relation.ispartofAdvanced Optical Materialsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectTHz Photonicsde_CH
dc.subjectNonlinear opticsde_CH
dc.subjectOrganic crystalsde_CH
dc.subjectTHz wavesde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleLocal rigidity by flexibility : unusual design for organic THz‐device materialsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1002/adom.202300807de_CH
dc.identifier.doi10.21256/zhaw-30340-
zhaw.funding.euNode_CH
zhaw.issue21de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start2300807de_CH
zhaw.publication.statusacceptedVersionde_CH
zhaw.volume11de_CH
zhaw.embargo.end2024-06-23de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf188194de_CH
zhaw.webfeedPhotonicsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2023_Kim-etal_Local-rigidity-by-flexibility-organic-THz-device-materials_AAM.pdf
  Until 2024-06-23
Accepted Version2.03 MBAdobe PDFView/Open
Show simple item record
Kim, D.-J., Yu, I. C., Jazbinsek, M., Kim, C., Yoon, W., Yun, H., Kim, S.-W., Kim, D., Rotermund, F., & Kwon, O.-P. (2023). Local rigidity by flexibility : unusual design for organic THz‐device materials. Advanced Optical Materials, 11(21), 2300807. https://doi.org/10.1002/adom.202300807
Kim, D.-J. et al. (2023) ‘Local rigidity by flexibility : unusual design for organic THz‐device materials’, Advanced Optical Materials, 11(21), p. 2300807. Available at: https://doi.org/10.1002/adom.202300807.
D.-J. Kim et al., “Local rigidity by flexibility : unusual design for organic THz‐device materials,” Advanced Optical Materials, vol. 11, no. 21, p. 2300807, Nov. 2023, doi: 10.1002/adom.202300807.
KIM, Dong‐Joo, In Cheol YU, Mojca JAZBINSEK, Chaeyoon KIM, Woojin YOON, Hoseop YUN, Sang‐Wook KIM, Dongwook KIM, Fabian ROTERMUND und O‐Pil KWON, 2023. Local rigidity by flexibility : unusual design for organic THz‐device materials. Advanced Optical Materials. 6 November 2023. Bd. 11, Nr. 21, S. 2300807. DOI 10.1002/adom.202300807
Kim, Dong‐Joo, In Cheol Yu, Mojca Jazbinsek, Chaeyoon Kim, Woojin Yoon, Hoseop Yun, Sang‐Wook Kim, Dongwook Kim, Fabian Rotermund, and O‐Pil Kwon. 2023. “Local Rigidity by Flexibility : Unusual Design for Organic THz‐Device Materials.” Advanced Optical Materials 11 (21): 2300807. https://doi.org/10.1002/adom.202300807.
Kim, Dong-Joo, et al. “Local Rigidity by Flexibility : Unusual Design for Organic THz‐Device Materials.” Advanced Optical Materials, vol. 11, no. 21, Nov. 2023, p. 2300807, https://doi.org/10.1002/adom.202300807.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.