Full metadata record
DC FieldValueLanguage
dc.contributor.authorHolzer, Lorenz-
dc.contributor.authorStenzel, Ole-
dc.contributor.authorPecho, Omar-
dc.contributor.authorOtt, Tobias-
dc.contributor.authorBoiger, Gernot Kurt-
dc.contributor.authorGorbar, Michal-
dc.contributor.authorde Hazan, Yoram-
dc.contributor.authorPenner, Dirk-
dc.contributor.authorSchneider, I.-
dc.contributor.authorCervera, R.-
dc.contributor.authorGasser, P.-
dc.date.accessioned2018-05-24T07:03:02Z-
dc.date.available2018-05-24T07:03:02Z-
dc.date.issued2016-
dc.identifier.issn0264-1275de_CH
dc.identifier.issn0261-3069de_CH
dc.identifier.issn1873-4197de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/6052-
dc.description.abstractPorous Diaphragms in pH-Sensors must meet apparently contradicting requirements such has high conductivity vs. low permeability and low outflow rate of the electrolyte vs. high flow velocity. In this study we intend to lay the foundations for knowledge-based materials design, so that the required materials properties can be achieved. This approach is based on a quantitative understanding of the relationships between 3D topological parameters with the corresponding effective transport properties (flow/permeability and conductivity). All transport relevant topological parameters (i.e. tortuosity, constrictivity, porosity and hydraulic radius) are determined by FIBtomography and 3D image analysis. Effective properties (conduction and flow) are determined a) by 3D numerical simulation and b) with experimental characterization. The experimental work includes fabrication and characterization of porous YSZ sintered at 1250, 1300 and 1350 ÅãC. Fundamental relationships are established by comparison of topological data with results from simulation and from experiment. The following design guidelines are then postulated: a) flow properties are adjusted independently from the conduction via manipulation of the hydraulic radius, b) high local flow velocity and at the same time relatively low volume outflow can be achieved by adjusting the constrictivity via manipulation of sintering conditions and with addition of pore former.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofMaterials & Designde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectKnowledge-basedde_CH
dc.subjectDiaphragmde_CH
dc.subjectMapde_CH
dc.subjectElectrolytede_CH
dc.subject.ddc530: Physikde_CH
dc.subject.ddc620.11: Werkstoffede_CH
dc.titleFundamental relationships between 3D pore topology, electrolyte conduction and flow properties : towards knowledge-based design of ceramic diaphragms for sensor applicationsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
zhaw.organisationalunitInstitute of Materials and Process Engineering (IMPE)de_CH
dc.identifier.doi10.1016/j.matdes.2016.03.034de_CH
zhaw.funding.euNode_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.end327de_CH
zhaw.pages.start314de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume99de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedKeramische Materialiende_CH
zhaw.relation.referenceshttps://doi.org/10.5281/zenodo.4049960de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Holzer, L., Stenzel, O., Pecho, O., Ott, T., Boiger, G. K., Gorbar, M., de Hazan, Y., Penner, D., Schneider, I., Cervera, R., & Gasser, P. (2016). Fundamental relationships between 3D pore topology, electrolyte conduction and flow properties : towards knowledge-based design of ceramic diaphragms for sensor applications. Materials & Design, 99, 314–327. https://doi.org/10.1016/j.matdes.2016.03.034
Holzer, L. et al. (2016) ‘Fundamental relationships between 3D pore topology, electrolyte conduction and flow properties : towards knowledge-based design of ceramic diaphragms for sensor applications’, Materials & Design, 99, pp. 314–327. Available at: https://doi.org/10.1016/j.matdes.2016.03.034.
L. Holzer et al., “Fundamental relationships between 3D pore topology, electrolyte conduction and flow properties : towards knowledge-based design of ceramic diaphragms for sensor applications,” Materials & Design, vol. 99, pp. 314–327, 2016, doi: 10.1016/j.matdes.2016.03.034.
HOLZER, Lorenz, Ole STENZEL, Omar PECHO, Tobias OTT, Gernot Kurt BOIGER, Michal GORBAR, Yoram DE HAZAN, Dirk PENNER, I. SCHNEIDER, R. CERVERA und P. GASSER, 2016. Fundamental relationships between 3D pore topology, electrolyte conduction and flow properties : towards knowledge-based design of ceramic diaphragms for sensor applications. Materials & Design. 2016. Bd. 99, S. 314–327. DOI 10.1016/j.matdes.2016.03.034
Holzer, Lorenz, Ole Stenzel, Omar Pecho, Tobias Ott, Gernot Kurt Boiger, Michal Gorbar, Yoram de Hazan, et al. 2016. “Fundamental Relationships between 3D Pore Topology, Electrolyte Conduction and Flow Properties : Towards Knowledge-Based Design of Ceramic Diaphragms for Sensor Applications.” Materials & Design 99: 314–27. https://doi.org/10.1016/j.matdes.2016.03.034.
Holzer, Lorenz, et al. “Fundamental Relationships between 3D Pore Topology, Electrolyte Conduction and Flow Properties : Towards Knowledge-Based Design of Ceramic Diaphragms for Sensor Applications.” Materials & Design, vol. 99, 2016, pp. 314–27, https://doi.org/10.1016/j.matdes.2016.03.034.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.