Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-1992
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKnapp, Evelyne-
dc.contributor.authorRuhstaller, Beat-
dc.date.accessioned2018-06-15T11:45:52Z-
dc.date.available2018-06-15T11:45:52Z-
dc.date.issued2015-03-
dc.identifier.issn0021-8979de_CH
dc.identifier.issn1089-7550de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/6929-
dc.description.abstractIn admittance spectroscopy of organic semiconductor devices, negative capacitance values arise at low frequency and high voltages. This study aims at explaining the influence of self-heating on the frequency-dependent capacitance and demonstrates its impact on steady-state and dynamic experiments. Therefore, a one dimensional numerical drift-diffusion model extended by the heat equation is presented. We calculate the admittance with two approaches: a Fourier method that is applied to time domain data and a numerically efficient sinusoidal steady state analysis (S3A), which is based on the linearization of the equations around the operating point. The simulation results coincide well with the experimental findings from reference [H. Okumoto and T. Tsutsui, Appl. Phys. Express 7, 061601 (2014)] where the negative capacitance effect of an organic device becomes weaker with better cooling of the structure. Linking the frequency- and time-domain with the Fourier approach supports an effortless interpretation of the negative capacitance. Namely, we find that negative capacitance originates from self-heating induced current enhancement.de_CH
dc.language.isoende_CH
dc.publisherAmerican Institute of Physicsde_CH
dc.relation.ispartofJournal of Applied Physicsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectOrganic semicondutorde_CH
dc.subjectNegative capacitancede_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleAnalysis of negative capacitance and self-heating in organic semiconductor devicesde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.21256/zhaw-1992-
dc.identifier.doi10.1063/1.4916981de_CH
zhaw.funding.euNode_CH
zhaw.issue13de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume117de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2015_ruhb_Analysis_of_negative_capacitance.pdf1.07 MBAdobe PDFThumbnail
View/Open
Show simple item record
Knapp, E., & Ruhstaller, B. (2015). Analysis of negative capacitance and self-heating in organic semiconductor devices. Journal of Applied Physics, 117(13). https://doi.org/10.21256/zhaw-1992
Knapp, E. and Ruhstaller, B. (2015) ‘Analysis of negative capacitance and self-heating in organic semiconductor devices’, Journal of Applied Physics, 117(13). Available at: https://doi.org/10.21256/zhaw-1992.
E. Knapp and B. Ruhstaller, “Analysis of negative capacitance and self-heating in organic semiconductor devices,” Journal of Applied Physics, vol. 117, no. 13, Mar. 2015, doi: 10.21256/zhaw-1992.
KNAPP, Evelyne und Beat RUHSTALLER, 2015. Analysis of negative capacitance and self-heating in organic semiconductor devices. Journal of Applied Physics. März 2015. Bd. 117, Nr. 13. DOI 10.21256/zhaw-1992
Knapp, Evelyne, and Beat Ruhstaller. 2015. “Analysis of Negative Capacitance and Self-Heating in Organic Semiconductor Devices.” Journal of Applied Physics 117 (13). https://doi.org/10.21256/zhaw-1992.
Knapp, Evelyne, and Beat Ruhstaller. “Analysis of Negative Capacitance and Self-Heating in Organic Semiconductor Devices.” Journal of Applied Physics, vol. 117, no. 13, Mar. 2015, https://doi.org/10.21256/zhaw-1992.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.