Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-19629
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Scalable photonic sources using two-dimensional lead halide perovskite superlattices
Authors: Jagielski, Jakub
Solari, Simon F.
Jordan, Lucie
Scullion, Declan
Blülle, Balthasar
Li, Yen-Ting
Krumeich, Frank
Chiu, Yu-Cheng
Ruhstaller, Beat
Santos, Elton J. G.
Shih, Chih-Jen
et. al: No
DOI: 10.1038/s41467-019-14084-3
10.21256/zhaw-19629
Published in: Nature Communications
Volume(Issue): 11
Issue: 1
Issue Date: Jan-2020
Publisher / Ed. Institution: Nature Publishing Group
ISSN: 2041-1723
Language: English
Subject (DDC): 530: Physics
Abstract: Miniaturized photonic sources based on semiconducting two-dimensional (2D) materials offer new technological opportunities beyond the modern III-V platforms. For example, the quantum-confined 2D electronic structure aligns the exciton transition dipole moment parallel to the surface plane, thereby outcoupling more light to air which gives rise to high-efficiency quantum optics and electroluminescent devices. It requires scalable materials and processes to create the decoupled multi-quantum-well superlattices, in which individual 2D material layers are isolated by atomically thin quantum barriers. Here, we report decoupled multi-quantum-well superlattices comprised of the colloidal quantum wells of lead halide perovskites, with unprecedentedly ultrathin quantum barriers that screen interlayer interactions within the range of 6.5 Å. Crystallographic and 2D k-space spectroscopic analysis reveals that the transition dipole moment orientation of bright excitons in the superlattices is predominantly in-plane and independent of stacking layer and quantum barrier thickness, confirming interlayer decoupling.
URI: https://digitalcollection.zhaw.ch/handle/11475/19629
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Appears in collections:Publikationen School of Engineering

Show full item record
Jagielski, J., Solari, S. F., Jordan, L., Scullion, D., Blülle, B., Li, Y.-T., Krumeich, F., Chiu, Y.-C., Ruhstaller, B., Santos, E. J. G., & Shih, C.-J. (2020). Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-14084-3
Jagielski, J. et al. (2020) ‘Scalable photonic sources using two-dimensional lead halide perovskite superlattices’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-019-14084-3.
J. Jagielski et al., “Scalable photonic sources using two-dimensional lead halide perovskite superlattices,” Nature Communications, vol. 11, no. 1, Jan. 2020, doi: 10.1038/s41467-019-14084-3.
JAGIELSKI, Jakub, Simon F. SOLARI, Lucie JORDAN, Declan SCULLION, Balthasar BLÜLLE, Yen-Ting LI, Frank KRUMEICH, Yu-Cheng CHIU, Beat RUHSTALLER, Elton J. G. SANTOS und Chih-Jen SHIH, 2020. Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nature Communications. Januar 2020. Bd. 11, Nr. 1. DOI 10.1038/s41467-019-14084-3
Jagielski, Jakub, Simon F. Solari, Lucie Jordan, Declan Scullion, Balthasar Blülle, Yen-Ting Li, Frank Krumeich, et al. 2020. “Scalable Photonic Sources Using Two-Dimensional Lead Halide Perovskite Superlattices.” Nature Communications 11 (1). https://doi.org/10.1038/s41467-019-14084-3.
Jagielski, Jakub, et al. “Scalable Photonic Sources Using Two-Dimensional Lead Halide Perovskite Superlattices.” Nature Communications, vol. 11, no. 1, Jan. 2020, https://doi.org/10.1038/s41467-019-14084-3.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.