Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-24719
Publication type: Article in scientific journal
Type of review: Peer review (publication)
Title: Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries
Authors: Mourouga, Gaël
Schärer, Roman P.
Yang, Xian
Janoschka, Tobias
Schmidt, Thomas J.
Schumacher, Jürgen O.
et. al: No
DOI: 10.1016/j.electacta.2022.140185
10.21256/zhaw-24719
Published in: Electrochimica Acta
Volume(Issue): 415
Issue: 140185
Issue Date: 2022
Publisher / Ed. Institution: Elsevier
ISSN: 0013-4686
1873-3859
Language: English
Subjects: AORFB; Open-source software; Sensitivity analysis; All-organic chemical system; Performance prediction
Subject (DDC): 621.3: Electrical, communications, control engineering
Abstract: Aqueous organic redox-flow batteries are an emerging technological solution in the field of grid-scale energy storage, owing to their long lifetime, safety, chemical flexibility, potential for low cost and environmental friendliness. In this work we present a physics-based dimensionality reduced model for the performance prediction of aqueous organic redox flow batteries. The model allows for fast evaluations of the cell voltage and power density, which are expressed explicitly in terms of the electric current density and state of charge. The model takes into consideration important phenomena, such as the activation and concentration overpotentials in the electrodes as well as the non-negligible electro-osmotic drag of water through the membrane. A sensitivity analysis of the model indicates the influence of various model parameters at different current densities on the predicted cell voltage. In this work we found the formal potentials and ohmic cell resistance to be the most critical parameters for performance prediction. Experimental parameterization and validation on cycling and polarization experiments revealed good agreement with the experiments within a predicted range of validity due to the different simplifying assumptions.
URI: https://digitalcollection.zhaw.ch/handle/11475/24719
Fulltext version: Published version
License (according to publishing contract): CC BY 4.0: Attribution 4.0 International
Departement: School of Engineering
Organisational Unit: Institute of Computational Physics (ICP)
Published as part of the ZHAW project: Modellierung für die Suche nach neuen aktiven Materialien für Redox-Flow-Batterien
Appears in collections:Publikationen School of Engineering

Files in This Item:
File Description SizeFormat 
2022_Mourouga-etal_0D-U-I-SoC-cell-performance-model.pdf2.81 MBAdobe PDFThumbnail
View/Open
Show full item record
Mourouga, G., Schärer, R. P., Yang, X., Janoschka, T., Schmidt, T. J., & Schumacher, J. O. (2022). Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries. Electrochimica Acta, 415(140185). https://doi.org/10.1016/j.electacta.2022.140185
Mourouga, G. et al. (2022) ‘Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries’, Electrochimica Acta, 415(140185). Available at: https://doi.org/10.1016/j.electacta.2022.140185.
G. Mourouga, R. P. Schärer, X. Yang, T. Janoschka, T. J. Schmidt, and J. O. Schumacher, “Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries,” Electrochimica Acta, vol. 415, no. 140185, 2022, doi: 10.1016/j.electacta.2022.140185.
MOUROUGA, Gaël, Roman P. SCHÄRER, Xian YANG, Tobias JANOSCHKA, Thomas J. SCHMIDT und Jürgen O. SCHUMACHER, 2022. Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries. Electrochimica Acta. 2022. Bd. 415, Nr. 140185. DOI 10.1016/j.electacta.2022.140185
Mourouga, Gaël, Roman P. Schärer, Xian Yang, Tobias Janoschka, Thomas J. Schmidt, and Jürgen O. Schumacher. 2022. “Physics-Based 0D-U-I-SoC Cell Performance Model for Aqueous Organic Redox Flow Batteries.” Electrochimica Acta 415 (140185). https://doi.org/10.1016/j.electacta.2022.140185.
Mourouga, Gaël, et al. “Physics-Based 0D-U-I-SoC Cell Performance Model for Aqueous Organic Redox Flow Batteries.” Electrochimica Acta, vol. 415, no. 140185, 2022, https://doi.org/10.1016/j.electacta.2022.140185.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.